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ESTIMATING THE HEDGE RATIOS 

Mária Bohdalová1, Michal Greguš2

 

Abstract: This paper examines the problem of hedging portfolio returns. Many practitioners and academicians 

endeavor to solve the problem of how to calculate the optimal hedge ratio accurately. In this paper we compare 

estimates of the hedge ratio from a classical approach of a linear quantile regression, based on selected quantiles 

as medians, with that of a non-linear quantile regression. To estimate the hedge ratios, we have used a calibrated 

Student t distribution for the marginal densities and a Student t copula of the portfolio returns using a maximum 

likelihood estimation. We created two portfolios of the assets, one for equal weight and another for optimal 

weight in respect of minimal risk. Our findings show that an assumption of Student t marginal leads to a better 

estimation of the hedge ratio.  
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Introduction 

Contemporary financial markets are characterized by their instability due to many crisis periods. 

Academic literature is a rich source of trading strategies that are oriented to eliminate the risk of 

losses. Hedging is one of them. Hedging strategies have also been examined using models that 

incorporate tail dependence structure between the investment of interest and the hedging instrument 

(Lien, Shrestha, & Wu, 2016). Conventional method for the optimal hedge ratios estimate uses the 

regression method. This approach is mainly based on the expected relation between investment of 

interest and the hedging instrument returns, which neglect the relationships between these two returns 

at different quantiles. This paper uses the concept of a quantile hedge ratio. We use a quantile 

regression method in estimating these quantile hedge ratios using copula. The quantile hedge ratio 

allows investment of interest and the hedging instrument returns to have different relationships at 

different quantiles. Consequently, a higher investment return may require a different hedge ratio from 

a lower investment return (Brooks, Olan, & Persand, 2002; Alexander, 2008). When the relationship 

between investment and hedging instrument returns does vary across quantiles, the quantile hedge 

ratio can provide better hedging efficiency than the hedge ratio obtained by OLS. 

The purpose of this paper is to determine the hedge ratios of two portfolios – Equally Weighted (EW) 

and Minimum Variance (MV) portfolio when the investor decides to reduce his risk. For this purpose 

1. we calibrate both portfolios and the hedge instrument by an appropriate distribution using 

historical prices time series, 

2. we compare the symmetric and asymmetric hedge ratio: 

• using simple linear regression based on OLS 

• using linear quantile regression 

• using non-linear quantile regressions based on Normal and Student t copula. 

The paper is organized as follows. The next section presents the methodology used in estimating the 

optimal hedge ratios. Section 3 describes the analyzed data and section 4 discusses empirical results. 

The conclusion concludes the paper. 

Methodology 

Let St and Ft represent investment and hedged instrument prices at time t. Then, returns on investment 

and hedged positions can be defined as Δst = ln(St) − ln(St−1) and Δft = ln(Ft) − ln(Ft−1) respectively. 

The return on the hedged portfolio RHt is given by (Lien et al., 2016): 

 RHt = Δst − H Δft, (1) 
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where H is the so-called hedge ratio. 

The MV hedge ratio HMV is obtained by minimizing the variance of RH with respect to H and is given 

by (Lien et al., 2016): 
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In the conventional approach, MV hedge ratio is represented as the coefficient in a regression of 

investment returns on hedging returns: 

 Δst  = α + β Δft +et (3) 

where the estimate of the MV hedge ratio, HMV, is given by the estimate of the slope coefficient β. 

The OLS method has been frequently criticized because this technique considers only symmetric 

linear relationship between variables and cannot provide a distinction between dependence during up 

and down markets or between large and small stock price movements (Aymen & Mongi, 2016). 

Quantile regression technique (developed by Koenker & Bassett in 1978) is an extension of the 

traditional least squares estimation of the conditional mean to a compilation of models for different 

conditional quantile functions. Classical linear regression model that describes the dependence of Y on 

X assumes the variables are bivariate normal. If X and Y do not have a bivariate normal distribution, 

then it is needed to describe the conditional distribution F(Y|X). Quantile regression gives tools to 

describe the conditional distribution of the dependent variable using its quantiles (Alexander, 2008). 

Quantile regression expresses the conditional quantiles of Y given X based on an arbitrary joint 

distribution while it is assumed the errors of the quantile regression are i.i.d with specific error 

distribution function Fε. 

Let q be a quantile of the error determined by    1 , 0,1F q q
   and simultaneously q denote 

the conditional quantile of the dependent variable Y, which is found from the inverse of F(Y|X), by 

F−1(q|X). Now, we take conditional quantile q of a simple linear regression model 

 Y=α + βX +ε (4) 

and we get a simple linear quantile regression model (Alexander, 2008): 

  1 1( )F q X X F q X     . (5) 

The aim of the simple quantile regression is to estimate the regression line parameters α and β 

based on a paired sample of X and Y, while quantile regression line passes through a quantile of the 

points. Quantile regression lines for different values of q are not parallel. Dependence of Y based on 

explanatory variable X could be constant when the values of (α, β) are not changed for different values 

of q, or monotonically increasing (decreasing) when (α, β) increases (decreases) with the value of q 

and symmetric (asymmetric) when the value of q is similar (dissimilar) for lower and upper quantiles 

(Aymen & Mongi, 2016). The coefficients (α, β) for a given q are estimated by minimizing the 

weighted sum of the absolute errors as  

 , (6) 

where 

  (7) 

The solution  ˆˆ ,q q   that minimizes the quantile loss function (3) satisfies 

 , (8) 
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where  1F̂ q X
 is the sample estimate of the conditional q˗quantile. We have used a numerical 

solution of equation (6) in Wolfram Mathematica software to estimate quantile regression coefficients 

 ˆˆ ,q q  . 

Copula quantile approach replaces the linear model in (6) by the q quantile curve of a copula. (Bouyé 

& Salomon, 2002). This enables us to model nonlinear relationships (Alexander, 2008).  

Let the marginal distributions of X and Y be F(X) and G(Y). They are specified by their marginal 

parameters α= {αX, αY}, which we have already estimated using maximum likelihood method. Let F(X, 

αX) and G(Y, αY). We then specify some functional form for a bivariate copula, which depends on 

certain parameters θ (the normal bivariate copula has one parameter, the correlation coefficient ρ and 

the bivariate Student t copula has two parameters, the degrees of freedom ν and the correlation ρ). 

Then the q quantile regression curve is  ˆˆ, ; ,t q t q qY Q X q   , where  ˆˆ ,q q   solves the 

optimization problem 

     , ; ,
, 1

min 1 , ; ,
T

t q tY Q X qt q t
t
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The explicit function Y = Yt of the normal copula quantile curves can be written as (Alexander, 2008): 

      1 1 2 11Y G F X q         
  

 (10) 

and Student t copula quantile curves has form 

           
211 1 2 1 1

1(1 ) 1Y G t t F X t F X t q      
   



  
      

  
. (11) 

Data 

This paper analyses the risk of investing in a portfolio created from these three stocks: Bayer (BAYN), 

Siemens (SIE) and Volkswagen Group (VOW). We have chosen the DAX index as the hedged 

instrument.  

We have estimated the optimal hedge ratio for the risk of our portfolios. We have created two 

portfolios – equally weighted (EW) and mean-variance (MV) optimal portfolio. MV portfolio is 

composed from 24.153% of BAYN, 69.269% SIE and only 6.578% VOW. 

Closing spot prices for both portfolios and the DAX index (Pt measured in time t) were rebased to 100 

and the fluctuation (measured in terms of logarithmic return) was computed. The analyzed period was 

from September, 27, 2010 to June, 28, 2016, which comprised 1,500 trading days, or T=1,499 

logarithmic returns (log returns are obtained by formula: rt = ln Pt /ln Pt-1, t = 1, …, T, excluding 

account dividends). A global financial portal provided the data (Fusion Media Ltd, n. d.; Finance 

Yahoo, n. d.). Our sample period is particularly relevant with several major changes occurring during 

that time. Volkswagen emission problem has caused a decrease in the value of the portfolio (see 

Figure 1). The time series of the closing prices and the effects of the Volkswagen emission scandal 

which erupted on 18 September 2015 are shown (Figure 1).  

Figure 1 shows the variation of the logarithmic returns in both portfolios and the DAX index. Figure 2 

shows the distributions and quantile plots of the returns for EW and MV portfolios in comparison to 

the DAX respectively. Both portfolios and the DAX index returns do not have normal distribution 

(Figure 2). The distributions have fat tails, so we have used Student t distribution. Model parameters 

for Student t distribution were estimated using a maximum likelihood estimation (MLE) method and 

calibrated in Wolfram Mathematica software using our own procedures (see Table 1). Table 1 displays 

summary statistics for daily returns for both portfolios and DAX returns. Table 2 reports the results for 

Student t copulas parameters, as well as the corresponding AIC and BIC values. 
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Figure 1: The DAX index and portfolios prices, rebased to 100. The DAX index and portfolios log 

returns; analyzed period: September, 27, 2010 to June, 28, 2016, daily data 

  

                  

Source: Authors 

 

Figure 2: The DAX index and portfolios log returns distributions; 

analyzed period: September, 27, 2010 to June, 28, 2016, daily data 

 

Source: Authors 

 

Table 1: Descriptive Statistics for both portfolios and the DAX returns; 

analysed period: September, 27, 2010 to June, 28, 2016, daily data 

Portfolio Mean 

 

Standard 

 Deviation 

Degree of 

 Freedom 

Median 

 

Skewness 

 

Kurtosis 

 

EW  
0.00025 0.01485 

5.51225 
0.00023 -0.27497 4.73780 

MV 
0.00018 0.01395 

5.45705 
0.00043 -0.23691 4.62830 

DAX 
0.00027 0.01324 

4.18068 
0.00081 -0.28255 5.29869 

 

Source: Authors 
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Table 2: Calibration of the Student t copulas parameters; q = 0.1 

analysed period: September, 27, 2010 to June, 28, 2016, daily data 

Copula Student t Copula AIC BIC 

 ν ρ   

EW-DAX   6.6360 0.9467 -3922.94 -2.6099 

MV-DAX 6.6193 0.9456 -3863.06 -2.5700 
 

Source: Authors 

Results and Discussion 

Tables 3-5 compare the optimal hedge ratio computed by the classical approach (OLS), linear quantile 

regression approach (QR), normal copula quantile regression and Student t copula quantile regression 

based on 0.1, 0.5 and 0.9 quantile. In both cases, copulas marginal have Student t distribution with 

parameters as described in Table 1.  

Table 3: Estimates of the hedge ratio for quantile q = 0.1 

analysed period: September, 27, 2010 to June, 28, 2016, daily data 

Hedge Ratio OLS QR  NCQR SCQR 

EW Portfolio 1.1447  1.1183 1.0673 1.0639 

MV Portfolio 1.0752  1.0051 1.0091 1.0038 
 

OLSR: Ordinary Least Square Regression, LQR: Linear Quantile Regression,  

NCQR: Normal Copula Quantile Regression, SCQR: Student t Copula Quantile Regression 

Source: Authors 

 

Table 4: Estimates of the hedge ratio for the median 

analysed period: September, 27, 2010 to June, 28, 2016, daily data 

Hedge Ratio OLSR LQR NCQR SCQR 

EW Portfolio 1.1447  1.1641 1.0407 1.1023 

MV Portfolio 1.0752  1.0134 1.0199 1.0141 
 

OLSR: Ordinary Least Square Regression, LQR: Linear Quantile Regression, 

NCQR: Normal Copula Quantile Regression, SCQR: Student t Copula Quantile Regression 

Source: Authors 

 

Table 5: Estimates of the hedge ratio for q = 0.9 

analysed period: September, 27, 2010 to June, 28, 2016, daily data 

Hedge Ratio OLSR LQR NCQR SCQR 

EW Portfolio 1.1447  1.1713 1.0695 1.0662 

MV Portfolio 1.0752  1.0572 1.0115 1.0076 
 

OLSR: Ordinary Least Square Regression, LQR: Linear Quantile Regression, 

NCQR: Normal Copula Quantile Regression, SCQR: Student t Copula Quantile Regression 

Source: Authors 
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Our findings suggest that Student t copula quantile regression approach gives the smallest estimations 

of the hedge ratios for 3 out of 4 cases, while in the fourth case the estimation is very close to the 

lowest value. Small values of estimations mean we estimate the risks more precisely. 

Conclusion 

This paper shows how we can solve the hedge problem using conditional dependence between 

portfolio returns at a given quantile and the hedging instrument. As a reasonable example, we have 

analyzed the dependency for quantiles 0.1, 0.5 and 0.9. It follows from our analysis that we can use 

non-linear dependency (described by copula function) with returns that are not bivariate normal to 

obtain more precise results. 
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